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Abstract 

Distributed systems characterized by a high degree of inter-computer resource sharing gen
erally perform better if resources are managed utilizing as much knowledge of the current 
glo_baJ state of the system as possible. Decentralized resource management schemes have 
been preferred over centralized schemes for reasons of reliability, autonomy, speed, and 
symmetry. Yet, distinct computers in a distributed system often view the global system 
state quite differently. Consequently, decisions which produce system-wide effects made by 
distinct computers can often conflict, invariably causing inefficiency in resource manage
ment and therefore leading to downgraded performance. 

To address these and related problems, a system is proposed which provides the following: 

* a mechanism for monitoring events of interest in a distributed system; 

* a mechanism for distributing monitored data throughout the distributed system; 

* a mechanism which uses heuristic-based specifications to interpret received monitored 
data from remote sources so that appropriate actions can be taken when necessary. 

The novelty and power of the proposed system lies in its application of expert system tech
nology to deal with uncertain, incomplete, erroneous and out-of-date observation data 
which is inevitable when one tries to efficiently monitor remote events in a distributed sys
tem. 
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(DoD), monitored by the Naval Electronics Systems Command under contract No. N00039-S4-C-0089. The views 
and conclusions contained in this document are those of the author and should not be interpreted as representing 
official policies, either expressed or implied, of I.B.M., the Defense Research Projects Agency or of the US Gover
ment. 



1. Introduction: The General Problem 

Remote resource-sharing in distributed systems has become increasingly popular. This 

development is quite analogous to the situation experienced twenty years ago, when time

sharing was introduced. Time-sharing allowed expensive and scarce resources (eg. CPU, 

primary memory, disks, tapes) to be shared in an orderly manner among many user 

processes. Networks connecting computers (along with appropriate protocols) offer user 

processes the capability of accessing resources which are remote, or located on different 

computing nodes of the network. 

There is a tremendous difference, though, in managing resource-sharing on the same com

puter and in managing resource-sharing on remote computers, particularly when one con

siders where the locus of control is in both situations. A computer's operating system is (for 

the most part) the single locus of control or the single source of decision-making for that 

computer's resources. Many distributed systems exist where decision-makers mutually 

manage all the resources, the decision-makers being the nodes participating in the 

resource-sharing. This decentralized scheme of control is hailed for such reasons as relia

bility (no single point of failure), autonomy (no one should have to take orders from anyone 

else), speed (many can do the job faster than one), and symmetry (adding or deleting nodes 

is easy and natural). Yet, just as in social systems, having many decision-makers work 

concurrently on the same problem can lead to many conflicting decisions, especially when 

each decision-maker sees the problem situation differently. Prescribing that decision

makers somehow agree to produce unified decisions (e.g., voting) is normally not possible 

due to time and communication constraints. Consequently, in retrospect, it may seem 

easier and more effective simply to elect a leader to make all the decisions, and give up 

whatever benefits decentralized control can offer. 

I am proposing to give decentralized control another chance by trying to focus on why 

conflicting decisions occur and how to minimize their frequency. Assuming that conflicting 

decisions are due to inconsistent (or non-existent!) views of the global state of the distri

buted system, the method of attack is to make relevant portions of the global state more 

accessible to the decision-making nodes, and to make the nodes more intelligent. 

2. Design of a Knowledge-Based Distributed Systems Manager 

A new scheme is proposed for managing resources in distributed systems. This design is 

general in that it can be applied to many distributed resource-sharing problems such as 

load-balancing, message-routing, and distributed file placement. Of course, the efficiency of 

the implementation of this design will depend on the particular application and the archi

tecture of the distributed system. Consequently, any implementation issues will focus on 

the application under investigation. 

3. The Structure of a Knowledge-Based Distributed Systems Manager 

The Knowledge-based Distributed Systems Manager has three subsystems: 

(1) Local State Monitors; 

(2) State Distributors; 

(3) Expert Managers. 

Briefly, Local State Monitors provide a mechanism for monitoring events of interest in the 

distributed system. Each computing node has a Local State Monitor which monitors state 

variables inside that node. To communicate state information to other nodes, State Distri

butors are provided. Thus, each computing node has a State Distributor which sends local 

state information to other nodes and also acquires state information about remote nodes. 

Finally, the mechanism which interprets all this local and remote state information is the 



Expert Manager. Expert Managers are small expert systems, and many can reside on a 

single node. Each Expert Manager knows how to deal with one application very well. For 

example, there may be an Expert Manager on every node for message routing; there may 

be another Expert Manager for balancing the load on a set of computers. 

A more detailed discussion of the above mechanisms follows. 

4. Local State Monitors 

At the lowest level of this system resides a mechanism for monitoring those events of 

interest which take place inside a node. Monitors can be of the hardware or software 

variety. I am assuming that software monitors will be there since they are relatively quick 

and easy to implement. Typically, events are not directly observable by software monitors, 

but the side effects they produce are directly observable. For example, an event of interest 

might be the arrival of a new process which joins the CPU queue. This event is not 

directly observable (if the CPU is being used to observe an event, it cannot possibly be 

queueing a process, assuming software monitors are not allocated dedicated processors), but 

if a side effect of queueing a process is to increment a counter, the counter's value can cer

tainly be observed to have changed. 

Consequently, the technique suggested to monitor events is to sample variables which get 

affected in some way (e.g., incremented) when the event of interest occurs. This technique 

has the main advantage that the monitor can be either a distinct process or a distinct part 

of the operating system kernel which simply reads special variables in the kernel. Regard

less of whether it is a process or a part of the kernel, the monitor is a self-contained piece of 

software which can be easily inserted or deleted, and is simple to understand, modify, and 

debug. Of course, its disadvantage is that, if we do not sample values at a sufficiently high 

rate, the monitor may not detect changes which are occurring very rapidly. This turns out 

to be a minor problem because events of interest to remote nodes will not change that 

rapidly. The speed of response to those changes is limited by the communication time 

between nodes, which is sufficiently large relative to the time between samples. For exam

ple, if it takes on the order of 1/10 second to send, receive, and process a message that con

tains sampled data, it makes no sense to sample at a rate of, say, one observation per mil

lisecond. 

A State Variable is a variable kept in a computer's primary memory representing a piece of 

state information about some object within that computer. Examples of state variables are: 

the length of the CPU ready-process queue; the length of network input and output 

queues; the amount of free vs. used primary memory; the amount of free space in a local 

file system. 

State variables are typically defined during the implementation of an operating system, but 

can also easily be added at a later time. These state variables may correspond to hardware 

sensors, software probes, or statistics which are functions of sensor and probe samples. The 

main point is that they represent state information about some function in the machine 

where they reside. 

A Local State Monitor resides inside each computer node and monitors state variables 

which will eventually be communicated to other nodes in the distributed system. The Local 

State of a computer node is the collection of all state variables currently being monitored. 

In particular, the Local State Monitor provides the following: 

* 

* 

the sampling of designated state variables and an interface for obtaining state vari

able sample statistics; 

a user interface which allows specification of what state variables are to be monitored 

and what their system-wide interpretation is to be: 
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* a tracing capability which records a history of state variable samples in a file. 

Thus, the Local State Monitor is a self~ontained unit which will provide its services to 

other subsystems through a specific interface. 

As an example, a computer node's Local State may consist of the following three state vari
ables: 

(1) length of network input queue; 

(2) length of network output queue; 

(3) length of ready-process queue. 

In general, these state variables would actually be time-smoothed versions of the instan
taneous corresponding queue lengths. Even this small Local State would be useful for sim

ple centralized or decentralized dynamic routing algorithms. 

The Local State Monitor maintains a database of statistics about state variables currently 

being monitored. These statistics can be used to infer properties about the past behavior of 
each state variable. Such information may then be used for predictive purposes. For exam

ple, the following pieces of statistics might be kept about each state variable: 

* 
* 
* 
* 
* 

the current sampled value; 

the geometric average value (e.g., x[n] + x[n-1]/2 + x[n-2]/4 + ... ); 
the change between the current and the previous samples (e.g., c(n] = x[n] - x[n-1]); 

the geometric average change (e.g., c[n] + c[n-1]/2 + c[n-2]/4 + ... ); 
a time-stamp of when the sample was updated. 

This set of statistics provides information about the state variable's instantaneous value, its 

typical value and variability as a function of time, and how stale the information is. One 

can efficiently implement a generator of these statistics using 2 shift and 3 add operations, 
along with the required memory reads and writes. Thus, even if there were 100 state vari

ables being monitored every 1110 second and the time to perform a basic instruction were 1 
microsecond, the percentage of CPU time used to perform this monitoring would be on the 

order of a tenth of a percent. 

The Local State Monitor also manages the database of state-variable samples received from 

remote nodes through the State Distributor, to be described in the next section. Conse
quently, information about remote state variables can also be accessed from the Local State 

Monitor through the same interface used to access local state variable information. In this 
case, an identifier of the remote node would be passed along with the other interface 
parameters. 

Descriptions of other systems which have used similar ideas can be found in [Borysowich82] 

[Lewis80] [Tarnay80] [Terplan81] [Terplan83]. A system which does a similar monitoring 

function at the user level is Metric [McDaniel75]. In fact, the way Metric allows the type 

definition of events could be adopted for the definition of state variables. As in Metric, a 

particular type of state variable would be interpreted the same way throughout the distri
buted system once conventions are developed. 

5. State Distributors 

Once state variables of interest are sampled, there must be a mechanism by which they can 
be communicated to remote nodes. This mechanism must be highly efficient since the data 

being transmitted becomes less useful as time passes on. Although this depends very much 

on the particular structure of tpe distributed system and on the available hardware, the 
design must be able to take advantage of any implementation-specific efficiencies that 
might be achieved. 



A Relevant Local State is the collection of state variables in a node which are of interest to 

remote nodes. A Relevant Local State Snapshot is the collection of the most current sam

pled values of state variables in the Relevant Local State. A State Distributor is the 

mechanism which distributes Relevant Local State Snapshots to other nodes in the distri

buted system. There is a State Distributor in all nodes (participating in resource sharing), 

and State Distributors communicate two types of information between each other: 

(1) the Relevant Local State Snapshots of the node they reside in; 

(2) specifications of what state variables in remote nodes are of interest (i.e., what state 

variables should be included in a remote node's Relevant Local State). 

When a State Distributor receives a Relevant Local State Snapshot from a remote node, it 

communicates this information to the Local State Monitor, which provides the interface to 

other subsystems for accessing the data. The collection of all Relevant Local State 

Snapshots which a node collects from other nodes (along with its own Local State) is called 

the node's Relevant Global State. Thus, when a request is made to the Local State Monitor 

for the value of a particular state variable, one may also specify the node of interest. For 

example, one may request the value of the local CPU queue length, or the value of a 

remote node's CPU queue length if the node is specified. 

A State Distributor makes use of the interface provided by the Local State Monitor residing 

on the same computing node. This is how it obtains those values of the Local State which 

become the Relevant Local State Snapshot to be distributed. 

Consequently, it is the function of all the State Distributors in the distributed system 

cooperatively to produce a kind of "raw" global system state for each node, namely the 

Relevant Global State. Note that this raw global system state is very approximate; in fact, 

each node could easily have a different version of this state. Thus, this raw global system 

state must go through a level of interpretation or filtering so that a better approximation of 

the true global state is available. This will be the subject of the next section. 

As mentioned above, the implementation of State Distributors is dependent on the architec

ture of the distributed system and on the types of distributed computations which will 

make use of Relevant Global States. For example, a routing algorithm fOr a distributed 

system which consists of an inter-network (i.e., a network of networks) of computing nodes 

may require all nodes in the inter-network to know state information about each other. 

Other algorithms require knowledge of state information only about nodes in the same net

work, with gateways taking care of inter-network traffic, and still other algorithms require 

only that neighboring nodes exchange state information. Consequently, a State Distributor 

for such applications must potentially be able to distribute Relevant Local State Snapshots 

to a large number of nodes, many of which can be very distant from each other. 

Another application might be load balancing, where the combined load of the computing 

nodes on a single local-area network is to be balanced across the nodes. In this case, the 

State Distributors may take advantage of the broadcast capability of the local-area network 

to transmit load information. Further optimizations are possible if smart network inter

faces which have DMA capability are used; broadcasting incurs very little overhead in this 

case. In yet another scenario, the State Distributor may make use of a distributed file sys

tem if broadcasting is n~t possible or undesirable. 

The idea of periodically sending performance data between nodes is well-established in the 

literature, especially for network monitoring systems [Abrams78] [Alton81a] [Alton81b] 

[Barchanski81] [Bartz83] [Bernstein83a] [Bernstein83b] [Buck78] [Caneshi81] [Grange77] 

[Herman82] [McCrea82] [Murphy81] [Murphy82] [Terplan82]. Yet, there are many 

unresolved issues such as the frequency of sending, whether ~roadcasting or multicasting 

should be used, and host interference and network interferenc~ ·due to the distribution pro

cess. 



6. Expert Managers 

Local State Monitors and State Distributors implement the mechanisms for exchanging 

observations about events occurring in all the nodes of a distributed system. The amount 

of information present in the raw observation data which a node receives can be 

overwhelming, to the point of being almost useless. For example, if there are 100 nodes 

and 10 relevant state variables are sampled at each node, and each state variable has 100 

different values (not a very complex system), we would face a state space of size 100,000! 

Specifying what to do for each case would be an exhausting process, and the prospect of 

adding new relevant state variables would be disastrous. 

Consequently, what is needed is a mechanism which will reduce this unwieldy state space 

to a small set of meaningful states. This mechanism must also be able to deal with the fact 

that much of the observed data is imperfect; not only can the data be noisy, but it will have 

aged since the time it was generated (by sampling a memory location, a process that intro

duces further uncertainty) and then communicated. This uncertainty must at least be 

expressible so that decisions made using the imperfect data take uncertainty into account. 

An Expert Manager is a mechanism which addresses these problems through the use of 

techniques borrowed from expert system technology. In fact, an Expert Manager is really a 

small expert system. Its function is to analyze the current Relevant Global State (all the 

most recent data observed from all the nodes in the distributed system) and then make rea

sonable inferences about what is happening in the distributed system. Upon concluding 

that certain actions need to be taken, it can directly activate processes specifically designed 

to carry out these actions. Before continuing, a discussion about expert systems is in order. 

6.1. Expert Systems 

A key characteristic of an expert system is its use of heuristics to search for solutions to 

problems. These heuristics are basically "rules-of-thumb" which experts in the problem 

area go by when they solve problems. Moreover, the specification language of an expert 

system is typically a set of heuristics in the form of IF-THEN rules. These expert system 

languages are declarative (i.e., they specify what to do, as opposed to procedural languages, 

which specify how to do something). Most common programming languages are procedural. 

It is the role of Expert Managers to be policy makers. Expert Managers indicate what 

nodes should be doing cooperatively to solve a distributed problem, and not how the under

lying mechanisms carry the policies out. Consequently, it is natural that a declarative 

rule-based language be used to program Expert Managers. 

Expert systems are composed of a Knowledge Base, in the form of heuristics or a set of 

rules, and an Inference Engine, a mechanism which makes inferences through the applica

tion of the knowledge-base rules. An expert system operates by accepting inputs, and then 

applies appropriate rules to make conclusions about the inputs. Rules are then applied to 

the conclusions to make further conclusions, this process continuing until the problem is 

solved. Expert systems have other interesting and useful features, which make them 

ideally suited to implement Expert Managers. These other features found in various expert 

systems are: 

* 
* 
* 

Forward-Chaining Control 

Action Activation 

Goal-Oriented Operation 

* Ability to Deal with Uncertainty 

6.2. An Example 

To explain how an Expert Manager would work, consider the following example of a load 

balancing Expert Manager. First, a brief description of distributed system state monitoring 

and distribution is given, followed by how Expert Managers make use of the system state. 



6.3. State Monitoring and Distribution 

A local-area network has many computing nodes and it is desired that the load be roughly 
balanced across all nodes, the idea being that it would be poor management to have one 
computing node overworked if there were other nodes which were completely idle. Assume 
that a reasonable metric for the load of a computer is the length of the CPU ready-process 
queue. Consequently, we define a state variable, called LA for Load Average, which is a 
statistic constructed by time-averaging samples of the instantaneous CPU ready-process 
queue length. This state variable is monitored by the Local State Monitor inside each com
puter node, and its values are made available to other nodes through the State Distributor. 

6.4. Rules and State Interpretation 

An Expert Manager dedicated to load balancing could now interpret the LA state variable 
in the following way: 

(1) IF LA(X) > 8 THEN State(X) is OVERLOADED 

(2) IF 2 < LA(X) < 8 THEN State(X) is BUSY 

(3) IF LA(X) < 2 THEN State(X) is IDLE 

These are typical rules which might be programmed into an Expert Manager. Rule 1 
translates to: if the load average of node X is greater than 8, consider the state of node X 
to be OVERLOADED. Substituted for X are all nodes which communicate their Relevant 
States to the node on which the Expert Manager resides. 

Here, nodes are considered to be in one of three states. Thus, a simple function that can be 
carried out by the Expert Manager consists of taking a large state space defined by all the 
local and remote state variables received, and conglomerate them into a small set of mean
ingful states (in this case, three) through simple rules. 

IF-THEN rules are the most common way of expressing knowledge in expert systems. One 
of the first expert systems to express rules in this fashion was the MYCIN system 
[Shortliffe76]. Other notable examples are PROSPECTOR [Duda78], PUFF [Freiherr80], 
and ROSIE [Fain82]. 

6.5. Inferring Causal Relationships 

The Expert Manager, given the above three rules, can then construct the following rules on 
its own: 

(4) IF LA(XJ is increasing AND State(X) is IDLE THEN State(X) will become BUSY 

(5) IF LA(X) is increasing AND State( X) is BUSY THEN State( X) will become 
OVERLOADED 

(6) IF LA(X) is decreasing AND State(X) is OVERLOADED THEN State(X) will 
become BUSY 

(7) IF LA(X) is decreasing AND State(X) is BUSY THEN State(X) will become IDLE 

This was accomplished by a meta-rule of the Expert Manager, which notices that the range 
of LA is divided into intervals, and each interval is a state. It then constructs rules 4 
through 7. 

The idea of a meta-rule, a rule about other rules, is evident in many expert systems such as 
MYCIN [Shortliffe76], DENDRAL and META-DENDRAL [Buchanan78] [Lindsay80], and 
HEARSAY-III [Balzar80], and much of their power stems from the use of meta-rules. 
Rules 4 through 7 are actually a very simple form of the application of meta-rules. Here, a 
meta-rule exists specifically for the case when states are assigned to intervals of some state 
variable. 
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6.6. Forward Chaining and Actions 

Rules can also express that actions should take place. For example: 

(8) IF State(ME) is OVERWADED AND State(X) is IDLE THEN ACTIVATE 

(OFFWAD (X)) 

This rule simply states that if the state of the local node is OVERLOADED and the state of 
some other node is IDLE, then a process called OFFLOAD should be activated. This pro

cess is not really part of the Expert Manager. It is a process independently implemented, 

whose function is to offload processes located on the same node on which it resides to a node 
provided as a parameter. Thus, the Expert Manager makes the policy decision to offload, 

and an independent process implements the mechanism. 

As the Expert Manager executes, it continuously tries to match the antecedents of all its 

rules. If the local LA happened to be 10, and the LA on node A was 1, the Expert Manager 
would conclude that State(ME) is OVERLOADED and State(A) is IDLE. This would in 

turn fire rule 8, which causes the offloading process to take corrective action. The control 
mechanism to accomplish this is commonly called Foro;ard Chaining. 

6.7. Backward Chaining, and Goals 

An Expert Manager may also work in a goal-oriented mode. Consider the following addi
tional rules: 

(9) IF LA(ME) - LA(X) > 3 THEN SystemState is UNBALANCED 

(10) IF LA(ME) - LA(X) < 3 THEN SystemState is BALANCED 

One should immediately notice that inferences about causality can be made here. The fol

lowing additional rules are generated: 

(11) IF (LA(ME) - LA(X)) is increasing AND SystemState is BALANCED THEN Sys

temState will become UNBALANCED 

(12) IF (LA(ME) - LA(X)) is decreasing AND SystemState is UNBALANCED THEN 

SystemState wiU become BALANCED 

The Expert Manager may now be placed in a mode to achieve a goal by installing the fol
lowing directive: 

(13) Make SystemState BALANCED 

If SystemState's value is BALANCED, the Expert Manager does nothing. If SystemState's 

value is or becomes UNBALANCED, the Expert Manager tries to determine how to make 
it BALANCED. To do this, the Expert Manager uses backward chaining control to accom

plish the above goal. This is done by looking at the THEN parts of each rule for "System

State will become BALANCED". Observe that rule 12 applies. The Expert Manager tries to 
make the antecedent of rule 12 true, and this is how a goal is accomplished. Since System

State is currently UNBALANCED, one part of the antecedent is true. If LA(ME) - LA(X) 
is in fact decreasing for some node X, it will believe that eventually, the SystemState will 

become BALANCED, and the goal is achieved. If LA(ME) - LA(X) is not decreasing for any 

node X, it will inquire (a system operator or administrator): 

"How can I make 'LA(ME) - LA(X) is decreasing' TRUE?" 

A new rule may then be added: 

(14) IF ACTIVATE (OFFLOAD (X)) THEN LA( ME) - LA(X) is decreasing 

Using 14, the Expert System activates the OFFLOAD process and is then satisfied that the 

goal will eventually be accomplished. 

This backward chaining type of control is exactly how the MYCIN expert system works 
[Shortliffe76]. 



6.8. Dealing with Uncertainty 

Perhaps the greatest benefit that can be derived by using expert system technology to solve 

distributed systems management problems is to incorporate techniques of dealing with 
uncertainty. Briefly, the idea is that every rule may be given a certainty factor. This fac

tor indicates how sure we are that this rule truly works. Certainty factors usually range 

from -1 to 1, where -1 means we are sure the rule is false, 1 means we are sure it is true, 
and 0 means total uncertainty. Thus, we have a way of expressing how certain the 

knowledge is in the knowledge-base. 

Not only should we be able to express that rules are uncertain, we need especially to 
express that values of monitored state variables from remote nodes are uncertain. This 

uncertainty can vary in time: for example, an uncertainty function for a state variable can 

depend on its age and variability. As the data gets older or staler, we become less confident 
that it represents the true value at the remote node. It is also natural to include variabil

ity in the uncertainty factor; the more variable the data is, the less certain we are it is 
valid as time passes. 

7. Summary 

A proposal for a Knowledge-Based Distributed Systems Manager has been described. It is 

composed of three subsystems: Local State Monitors, State Distributors, and Expert 

Managers, which respectively monitor, distribute, and interpret the global state of the dis
tributed system. The novelty and power of this system lies in the way Expert Managers 

make use of the information provided by Local State Monitors and State Distributors. 

Techniques from expert systems are incorporated in Expert Managers, namely state 

interpretation, forward chaining, goal-oriented operation, and dealing with uncertainty 

using certainty factors, which allow intelligent interpretation of raw global state informa
tion. These techniques enable us naturally to express the types of functions needed for 

arriving at policy decisions when managing resources in a distributed system where the 

state of remote resources is not known with complete certainty. 
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